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Abstract

In a previous research, we proposed a first-order theory for reason-
ing about functional programs by combining interactive proofs per-
formed in the Agda proof assistant and automatic proofs performed
by off-the-shelf first-order automatic theorem provers (ATPs). Our
approach can be used with other first-order theories too. We have
used it with other first-order theories such as Group Theory and
Peano Arithmetic, and we had encouraging results. In our approach,
we use the ATPs as oracles via a Haskell program called Apia, that
is, we trust the ATPs when they tell us that a proof exists. In
consequence, the consistency of our approach relies on the correct
implementation of both the Apia program and the ATPs. We pro-
pose strengthen the consistency of our approach by reconstructing
in Agda the first-order proofs automatically produced.
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@ Verification of programs

o Verification of operational systems
Example: Gerwin Klein et al. [2010]. seL4: Formal Verification
of an Operating-system Kernel. Communications of ACM 53.6,
pp. 107-115.

o Verification of compilers
Example: CompCert Project (2008 - current)

Xavier Leroy [2009]. Formal Verification of a Realistic Compiler.
Communications of the ACM 52.7, pp. 107-115.

o Programming logic (a logic in which programs and specifications
can be expressed and in which it can be proved or disproved that
a certain program meets a certain specification).
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e Formalisation of proofs / verification of programs
o Proof assistant (an interactive computer system which helps
with the development of formal proofs).

o Dependent types (a dependent type is a type that depend on a
value).

o [l-types
IIz : A.B(x) is the type of terms f such that, for every a : A
then fa: B(a).
e X-types
Yax : A.B(x) is the type of pairs (m,n) such that m : A
and n : B(m).
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Context of Our Research Problem

@ Interaction with automatic theorem provers (ATPs)
o ATPs for first-order logic
The TPTP world (http://www.cs.miami.edu/~tptp/).
o Satisfiability modulo theories solvers (SMT Solvers)
e Apia
A Haskell program which:

(i) provides a translation of our Agda representation of first-order
formulae into TPTP languages (FOF, TFFO0) and

(ii) calls the ATPs.
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We propose strengthen the consistency of our approach by recon-
structing in Agda the first-order proofs automatically produced.

Goal

Reconstruct first-order proofs produced by one ATP using Agda as
an logical framework.
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@ We do not know of any existing first-order proof reconstruction in
the Agda proof assistant.

@ Sledgehammer provides a full integration of automatic theorem provers
including ATPs for first-order logic and SMT solvers [Blanchette,
Bohme, and Paulson 2013] with Isabelle/HOL.

@ Foster and Struth [2011] integrate Waldmeister into Agda. This
integration uses a proof reconstruction step. The approach is re-
stricted to pure equational logic—FOL with equality but no other
predicate symbols and no functions symbols [Appel 1959].

@ SMTCoq [Armand et al. 2011] is a tool for the Coq proof assistant
which provides a certified checker for proof witnesses coming from
the SMT solver veriT and adds a new tactic named verit, that calls
veriT on any Coq goal.

@ Given a fixed but arbitrary first-order signature, Bezem, Hendriks,
and de Nivelle [2002] transform a proof produced by the first-order
ATP Bliksem in a Coq proof term.
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