First-Order Proof Reconstruction
(Research Proposal — 2016)

Andrés Sicard-Ramirez

Seminar of the PhD in Mathematical Engineering
EAFIT University
21 September 2015



Abstract

In a previous research, we proposed a first-order theory for reason-
ing about functional programs by combining interactive proofs per-
formed in the Agda proof assistant and automatic proofs performed
by off-the-shelf first-order automatic theorem provers (ATPs). Our
approach can be used with other first-order theories too. We have
used it with other first-order theories such as Group Theory and
Peano Arithmetic, and we had encouraging results. In our approach,
we use the ATPs as oracles via a Haskell program called Apia, that
is, we trust the ATPs when they tell us that a proof exists. In
consequence, the consistency of our approach relies on the correct
implementation of both the Apia program and the ATPs. We pro-
pose strengthen the consistency of our approach by reconstructing
in Agda the first-order proofs automatically produced.



Project Information

Team work
@ Andrés Sicard-Ramirez (main researcher)
@ Juan Fernando Ospina-Giraldo (co-researcher)

@ Research assistant (student of the Master in Applied
Mathematics)



Project Information

Team work
@ Andrés Sicard-Ramirez (main researcher)
@ Juan Fernando Ospina-Giraldo (co-researcher)

@ Research assistant (student of the Master in Applied
Mathematics)

Subject

Formalisation of proofs, verification of functional programs, type
theory, proof assistants and automatic theorem provers.



Context of Our Research Problem

@ Verification of programs



Context of Our Research Problem

@ Verification of programs
o Verification of operational systems

Example: Gerwin Klein et al. [2010]. seL4: Formal Verification

of an Operating-system Kernel. Communications of ACM 53.6,
pp. 107-115.



Context of Our Research Problem

@ Verification of programs

o Verification of operational systems

Example: Gerwin Klein et al. [2010]. seL4: Formal Verification
of an Operating-system Kernel. Communications of ACM 53.6,
pp. 107-115.

o Verification of compilers
Example: CompCert Project (2008 - current)

Xavier Leroy [2009]. Formal Verification of a Realistic Compiler.
Communications of the ACM 52.7, pp. 107-115.



Context of Our Research Problem

@ Verification of programs

o Verification of operational systems
Example: Gerwin Klein et al. [2010]. seL4: Formal Verification
of an Operating-system Kernel. Communications of ACM 53.6,
pp. 107-115.

o Verification of compilers
Example: CompCert Project (2008 - current)

Xavier Leroy [2009]. Formal Verification of a Realistic Compiler.
Communications of the ACM 52.7, pp. 107-115.

o Programming logic (a logic in which programs and specifications
can be expressed and in which it can be proved or disproved that
a certain program meets a certain specification).



Context of Our Research Problem

e Formalisation of proofs / verification of programs



Context of Our Research Problem

e Formalisation of proofs / verification of programs

o Proof assistant (an interactive computer system which helps
with the development of formal proofs).



Context of Our Research Problem

e Formalisation of proofs / verification of programs
o Proof assistant (an interactive computer system which helps
with the development of formal proofs).

o Dependent types (a dependent type is a type that depend on a
value).

o [l-types
IIz : A.B(x) is the type of terms f such that, for every a : A
then fa: B(a).
e X-types
Yax : A.B(x) is the type of pairs (m,n) such that m : A
and n : B(m).



Context of Our Research Problem

@ Interaction with automatic theorem provers (ATPs)


http://www.cs.miami.edu/~tptp/

Context of Our Research Problem

@ Interaction with automatic theorem provers (ATPs)

o ATPs for first-order logic
The TPTP world (http://www.cs.miami.edu/~tptp/).


http://www.cs.miami.edu/~tptp/

Context of Our Research Problem

@ Interaction with automatic theorem provers (ATPs)

o ATPs for first-order logic
The TPTP world (http://www.cs.miami.edu/~tptp/).
o Satisfiability modulo theories solvers (SMT Solvers)


http://www.cs.miami.edu/~tptp/

Context of Our Research Problem

@ Interaction with automatic theorem provers (ATPs)
o ATPs for first-order logic
The TPTP world (http://www.cs.miami.edu/~tptp/).
o Satisfiability modulo theories solvers (SMT Solvers)
e Apia
A Haskell program which:

(i) provides a translation of our Agda representation of first-order
formulae into TPTP languages (FOF, TFFO0) and

(ii) calls the ATPs.


http://www.cs.miami.edu/~tptp/

Research Problem

Problem

In our approach to the verification of functional programs [Bove,
Dybjer, and Sicard-Ramirez 2009, 2012; Sicard-Ramirez 2014], we
use the ATPs as oracles via the Apia program, that is, we trust the
ATPs when they tell us that a proof exists.

The consistency of our approach relies on the correct implementation
of both the Apia program and the ATPs.

We propose strengthen the consistency of our approach by recon-
structing in Agda the first-order proofs automatically produced.



Research Problem

Problem

In our approach to the verification of functional programs [Bove,
Dybjer, and Sicard-Ramirez 2009, 2012; Sicard-Ramirez 2014], we
use the ATPs as oracles via the Apia program, that is, we trust the
ATPs when they tell us that a proof exists.

The consistency of our approach relies on the correct implementation
of both the Apia program and the ATPs.

We propose strengthen the consistency of our approach by recon-
structing in Agda the first-order proofs automatically produced.

Goal

Reconstruct first-order proofs produced by one ATP using Agda as
an logical framework.



State of Art

@ We do not know of any existing first-order proof reconstruction in
the Agda proof assistant.



State of Art

@ We do not know of any existing first-order proof reconstruction in
the Agda proof assistant.

@ Sledgehammer provides a full integration of automatic theorem provers
including ATPs for first-order logic and SMT solvers [Blanchette,
Bohme, and Paulson 2013] with Isabelle/HOL.



State of Art

@ We do not know of any existing first-order proof reconstruction in
the Agda proof assistant.

@ Sledgehammer provides a full integration of automatic theorem provers
including ATPs for first-order logic and SMT solvers [Blanchette,
Bohme, and Paulson 2013] with Isabelle/HOL.

@ Foster and Struth [2011] integrate Waldmeister into Agda. This
integration uses a proof reconstruction step. The approach is re-
stricted to pure equational logic—FOL with equality but no other
predicate symbols and no functions symbols [Appel 1959].



State of Art

@ We do not know of any existing first-order proof reconstruction in
the Agda proof assistant.

@ Sledgehammer provides a full integration of automatic theorem provers
including ATPs for first-order logic and SMT solvers [Blanchette,
Bohme, and Paulson 2013] with Isabelle/HOL.

@ Foster and Struth [2011] integrate Waldmeister into Agda. This
integration uses a proof reconstruction step. The approach is re-
stricted to pure equational logic—FOL with equality but no other
predicate symbols and no functions symbols [Appel 1959].

@ SMTCoq [Armand et al. 2011] is a tool for the Coq proof assistant
which provides a certified checker for proof witnesses coming from
the SMT solver veriT and adds a new tactic named verit, that calls
veriT on any Coq goal.



State of Art

@ We do not know of any existing first-order proof reconstruction in
the Agda proof assistant.

@ Sledgehammer provides a full integration of automatic theorem provers
including ATPs for first-order logic and SMT solvers [Blanchette,
Bohme, and Paulson 2013] with Isabelle/HOL.

@ Foster and Struth [2011] integrate Waldmeister into Agda. This
integration uses a proof reconstruction step. The approach is re-
stricted to pure equational logic—FOL with equality but no other
predicate symbols and no functions symbols [Appel 1959].

@ SMTCoq [Armand et al. 2011] is a tool for the Coq proof assistant
which provides a certified checker for proof witnesses coming from
the SMT solver veriT and adds a new tactic named verit, that calls
veriT on any Coq goal.

@ Given a fixed but arbitrary first-order signature, Bezem, Hendriks,
and de Nivelle [2002] transform a proof produced by the first-order
ATP Bliksem in a Coq proof term.



References |

@ Appel, K. 1. (1959). Horn Sentences in Identity Theory. The Journal of
Symbolic Logic 24.4, pp. 306-310.

@ Armand, Michael, Germain Faure, Benjamin Grégoire, Chantal Keller,
Laurent Théry, and Benjamin Werner (2011). A Modular Integration of
SAT/SMT Solvers to Coq through Proof Witnesses. In: Certified
Programs and Proofs (CPP 2011). Ed. by Jean-Pierre Jouannaud and
Zhong Shao. Vol. 7080. Lecture Notes in Computer Science. Springer,
pp. 135-150.

@ Bezem, Marc, Dimitri Hendriks, and Hans de Nivelle (2002). Automated
Proof Construction in Type Theory Using Resolution. Journal of
Automated Reasoning 29, pp. 253-275.

@ Blanchette, Jasmin Christian, Sascha Béhme, and Lawrence C. Paulson
(2013). Extending Sledgehammer with SMT Solvers. Journal of
Automated Reasoning 51.1, pp. 109-128.



References |l

[4 Bove, Ana, Peter Dybjer, and Andrés Sicard-Ramirez (2009). Embedding
a Logical Theory of Constructions in Agda. In: Proceedings of the 3rd
Workshop on Programming Languages Meets Program Verification
(PLPV 2009), pp. 59-66.

B - (2012). Combining Interactive and Automatic Reasoning in First Order
Theories of Functional Programs. In: Foundations of Software Science
and Computation Structures (FoSSaCS 2012). Ed. by Lars Birkedal.
Vol. 7213. Lecture Notes in Computer Science. Springer, pp. 104-118.

[4 Foster, Simon and Georg Struth (2011). Integrating an Automated
Theorem Prover in Agda. In: NASA Formal Methods (NFM 2011).
Ed. by Mihael Bobaru et al. Vol. 6617. Lecture Notes in Computer
Science. Springer, pp. 116-130.

@ Klein, Gerwin, June Andronick, Kevin Elphinstone, Gernot Heiser,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood (2010). seL4: Formal Verification of an
Operating-system Kernel. Communications of ACM 53.6, pp. 107-115.



References Il|

B Leroy, Xavier (2009). Formal Verification of a Realistic Compiler.
Communications of the ACM 52.7, pp. 107-115.

[4 Sicard-Ramirez, Andrés (2014). Reasoning about Functional Programs by
Combining Interactive and Automatic Proofs. No publicada.
PhD thesis. PEDECIBA Informética. Universidad de la Republica.
Uruguay.



Thanks!



