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Conjecture

M will be a smooth closed (compact and without boundary) connected
manifold; if g is a Riemannian metric for M , ∆g will denote the
Laplace-Beltrami operator (Chavel, 1984),

λ0 = 0 < λ1 < λ2 < . . .

its eigenvalues, and Eλk the (real) vector space formed by all
eigenfunctions corresponding to λk.
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Conjecture

Tentative form of the conjecture:
Let (M, g) be a Riemannian manifold such that g is locally homogeneous,
i.e. for each pair of points p, q ∈M there exist neighborhoods Up and Uq
of p and q respectively, such that there exists an isometry from (Up, g) to
(Uq, g) sending p to q. Then for almost all f ∈ L2(M, g), if u(x, t) is the
solution to the problem 

∂u

∂t
= 4gu

u (·, 0) = f

there exists Tf > 0 such that if t ≥ Tf then ut := u(., t) : M → R is
Morse and minimal.
Morse function: smooth real valued function whose critical points are
nondegenerate.
Minimal Morse function: Morse function having less or the same number
of critical points than any other Morse function.
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Conjecture

Theorem. (Sufficient condition for the conjecture to hold)
Let (M, g) be a Riemannian manifold where g is arbitrary. If almost every
h ∈ Eλ1 is Morse and minimal, then the conjecture holds for
(M, g).

Note: Almost every h ∈ Eλ1 : means that h belongs to the complement of
a subset of Eλ1 which is the union of a countable collection of nowhere
dense sets. A set is nowhere dense if the interior of its closure is empty.
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Conjecture

We want to gain evidence that this sufficient condition holds when (M, g)
is (S3/I∗, ĝS3), i.e. the Poincaré’s homology sphere with the spherical
metric.
It is known that a Morse function on S3/I∗ is minimal if and only if it has
6 critical points.
To do this we need an explicit basis for Eλ1 , and to see that in a random
choice of linear combinations all functions are Morse and have 6 critical
points.
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Spherical Poincaré homology sphere

SPHS
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Binary Icosahedral Group

Let R4 = {(x, y, z, w)/x, y, z, w ∈ R} and let
S3 =

{
(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 1

}
The set

H = {x+ yi+ zj + wk : x, y, z, w ∈ R}

endowed with the obvious addition and multiplication determined by
i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j, is
the (noncommutative) right of quaternions. Let q = x+ yi+ zj + wk. Its
conjugate q is x− yi− zj − wk and its norm

|q| :=
√
qq =

√
x2 + y2 + z2 + w2
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Binary Icosahedral Group

A quaternion q is called unitary if |q| = 1. The set of unitary quaternions
with quaternion multiplication is a noncommutative group.
Clearly R4 can be identified with H via

(x, y, z, w)→ x+ yi+ zj + wk

This identification preserves addition, multiplication by a scalar, and norm,
and it identifies S3 with the set of unitary quaternions

{q ∈ H/|q| = 1}
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Binary Icosahedral Group

Now, S3 ⊂ R4 is a smooth, closed, connected, 3 dimensional manifold,
which inherits a Riemannian metric gS3 from the euclidean metric of its
ambient space R4.

The identification of S3 with the unitary quaternions allows us to define,
for every q ∈ S3, a map Tq : S3 → S3 as Tq(p) = qp.
It can be seen that each Tq is an isometry of (S3, gS3).
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Binary Icosahedral Group

There is a subgroup of the group of unitary quaternions, the binary
icosahedral group I∗ that we describe next. I∗ is formed by 120 elements:

I The 16 quaternions ±1
2 ±

1
2 i±

1
2j ±

1
2k.

I The 8 quaternions obtained from 0 + 0i+ 0j ± k by taking all
permutations of its coefficients.

I And the 96 quaternions obtained by taking all even permutations of
the coefficients of the quaternion ±1± ϕi± ϕ−1j + 0k.

where ϕ =
(
1 +
√

5
)
/2 is the golden proportion.
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Binary Icosahedral Group

We can define a left action of I∗ on S3

a : I∗ × S3 → S3, a (q, p) = qp

The left action a satisfies the conditions for the set of orbits S3/I∗ to be a
smooth, closed, connected, 3-dimensional manifold endowed with a
Riemannian metric ĝS3 .
(S3/I∗, ĝS3) is called the Spherical Poincaré homology sphere. It is
homologically indistinguishable from S3!
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Fundamental Domain

A very effective way to get a concrete picture of a quotient space, like
S3/I∗, is to determine a fundamental domain D and the identification of
points on its boundary ∂D induced by the action.

Let (X, gX) be a Riemannian manifold and let dX be the metric on X
induced by gX . Let a : G×X → X be a left action of a group G on X.
For each g ∈ G we define the map Tg : X → X sending x to a (g, x).
We require that a “acts by isometries”, i.e. that for each g ∈ G, Tg an
isometry.

If a has certain properties, the set of orbits {{a (g, x) : g ∈ G} : x ∈ X},
denoted X/G is a Riemannian manifold.
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Fundamental Domain

A fundamental domain D is the closure E of a E ⊂ X, usually asked to
be connected, containing exactly one element of each orbit of the action.
The sets g.E := {a(g, x)/x ∈ E} are such that g1.E ∩ g2.E = ∅ whenever
g1 6= g2, and X = ∪

g∈G
g.E.

Although the analogously defined sets g.D, g ∈ G do not form a partition
of X, in important contexts E can be adequately chosen so that if g1 6= g2,
g1.D and g2.D only meet along their boundaries, i.e. g1.D ∩ g2.D is a
subset of ∂(g1.D) ∩ ∂(g2.D). When this happens one says that
{g.D/g ∈ G} is a tessellation of X.

It can be seen that if we define a binary relation on ∂D by x ∼ y if there is
a g ∈ G with a(g, x) = y then the relation is an equivalence relation and
D/ ∼ is isometric to X/G. This allows one to think of X/G as obtained
by taking D and glueing parts of its boundary to other parts, according to
the action.
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Fundamental Domain

There is a particularly nice way to pick a fundamental domain.

If p ∈ X, the set

D(p) = {q ∈ X/∀g ∈ G, dX(p, q) ≤ dX(p, a(g, q))}

is a fundamental domain called the Dirichlet fundamental domain. It can
be seen that {g.D(p)/g ∈ G} is a tessellation of X, where by definition
any two tiles g1.D(p) and g2.D(p) are isometric. It is easy to see that
D(p) equals

V (p) = {q ∈ X/∀g ∈ G, dX(p, q) ≤ dX(a(g, p), q)}

This set is called the Voronoi cell of p respect to the orbit of p.

Jhon Bernal Spherical Poincaré homology sphere 31 May 2019 15 / 38



Fundamental Domain

For example, if X = (R, gR) and G = ({2πn/n ∈ Z},+), then
a(2πn, x) = x+ 2πn is an action by isometries, and for each p ∈ R, then
D(p) = V (p) = [p− π, p+ π] is a fundamental domain of this action. Now
X/G is isometric to D(p)/ ∼ and this is the interval [p− π, p+ π] with its
ends identified, giving a circle.

For u, v ∈ S3, dS3(u, v) = arccos (u · v) where u · v is the usual inner
product in R4.
Since the action of I∗ on S3 is by isometries, for each p ∈ S3 the set

V (p) =
{
x ∈ S3 : dS3 (x, p) ≤ dS3 (x, qp) , for all q ∈ I∗

}
is a fundamental domain.
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Fundamental Domain

We now describe V (p) where p = (0, 0, 0, 1) is the North of S3, so that we
can visualize it and use it in an algorithm for detecting critical points of
functions defined on S3/I∗.

We first calculate the orbit of p, O = {a(g, p)/g ∈ S3}. This set has 120
elements and p is one of them. In this set there are exactly 12 points q
such that dS3(q, p) is min{dS3(q, p)/q ∈ O − {p}}.

To visualize these constructions in R3 we use the stereographic projection
of S3 from its south pole s = (0, 0, 0,−1) defined as

πs : S3 \ {s} → R3

πs (x, y, z, w) =

(
x

1 + w
,

y

1 + w
,

z

1 + w

)
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Fundamental Domain

Notice that the stereographic projection of the center p = (0, 0, 0, 1) of the
fundamental domain is

πs (0, 0, 0, 1) =

(
0

1 + 1
,

0

1 + 1
,

0

1 + 1

)
= (0, 0, 0)

(0,0,0)
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Fundamental Domain

The projection of 6 of the 12 points p1, . . . , p12
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Fundamental Domain

Let δ = min {dS3 (pi, pj) : i 6= j}. It turns out that there are exactly 20
triads {pi1 , pi2 , pi3} such that δ = d (pi1 , pi2) = d (pi1 , pi3) = d (pi2 , pi3).
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Fundamental Domain

For each triad T = {pi1 , pi2 , pi3} we consider the three hyperplanes
HT

1 , H
T
2 , H

T
3 in R4 through the origin (0, 0, 0, 0) and whose respective

normal vectors nT1 , n
T
2 , n

T
3 are the differences p− pi1 , p− pi2 , p− pi3 .

The intersection
HT

1 ∩HT
2 ∩HT

3 ∩ S3

consists of one point qT . This point qT is equidistant to pi1 , pi2 , pi3 and p.
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Fundamental Domain

The projection of this point is depicted in
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Fundamental Domain

Each point pi lies in exactly five triads T i1, . . . , T
i
5.
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Fundamental Domain

The projection of the points qT i
1
, . . . , qT i

5
are the vertices of a pentagonal

face, which is the projection of a face of V (p).

Jhon Bernal Spherical Poincaré homology sphere 31 May 2019 24 / 38



Fundamental Domain

There are twelve pentagonal faces which form the boundary of a solid
dodecahedron, the desired fundamental domain. Its projection can be seen
in
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Fundamental Domain

The projection of the fundamental domain is therefore a solid
dodecahedron whose faces are slightly inflated.
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Fundamental Domain

It can be seen that the Poincaré homology sphere is homeomorphic to the
space obtained by glueing the opposite faces of this solid dodecahedron,
according to the rule depicted in
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Fundamental Domain

It can be seen that the Poincaré homology sphere is homeomorphic to the
space obtained by glueing the opposite faces of this solid dodecahedron,
according to the rule depicted in

36

Jhon Bernal Spherical Poincaré homology sphere 31 May 2019 27 / 38



Eigenvalues and Eigenfunctions of the
Laplace-Beltrami operator on the Spherical

Poincaré homology sphere
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Eigenfunctions

The paper (Weeks, 2006) gives an explicit description of the eigenvalues
and complex valued eigenfunctions of the Laplace-Beltrami operator on the
Spherical Poincaré homology sphere.

First, identify R4 with C2 = {(α, β)/α, β ∈ C}, by identifying (x, y, z, w)
with (x+ yi, z+wi). We are only interested in the space Eλ1 of the SPHS.

According to (Weeks, 2006), λ1 = 12 and the complex vector space
EC
λ1

:= {f : SPHS→ C/∆f = λ1f} has complex dimension 13 and a
basis can be obtained as follows.
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Eigenfunctions

Let

F1 = α11β + 11α6β6 − αβ11

This function is a complex valued function defined on C2. Now we define
the operator

twist−(F ) = −β∂F
∂α

+ α
∂F

∂β
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Eigenfunctions

Applying this operator successively 12 times we obtain the thirteen
functions

F1 = α11β + 11α6β6 − αβ11

F2 = twist−(F1)

F3 = twist−(F2)

...
F13 = twist−(F12)

The descent to SPHS of the restrictions to S3 ⊂ C2 of the functions
F1, . . . , F13 constitute a basis for the space

EC
λ1 := {f : SPHS → C/∆f = λ1f}
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Eigenfunctions

It can be seen that the descent to SPHS of the restrictions to S3 ⊂ C2 of
the functions f1, . . . , f13 defined as

{f1 = Re(F1), f2 = Im(F1), f3 = Re(F2), f4 = Im(F2), f5 = Re(F3),

f6 = Im(F3), f7 = Re(F4), f8 = Im(F4), f9 = Re(F5),

f10 = Im(F6), f11 = Re(F6), f12 = Im(F6), f13 = Re(F7)
}

is a basis for the space Eλ1 of real valued eigenfunctions of λ1 = 12 on
SPHS.
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Eigenfunctions

For example:

f1 = −w11y + 11w10xz + 55w9yz2 − 165w8xz3 − 330w7yz4 − 11

w6x6 + 165w6x4y2 − 165w6x2y4 + 462w6xz5 + 11w6

y6 − 396w5x5yz + 1320w5x3y3z − 396w5xy5z + 462w5y

z6 + 165w4x6z2 − 2475w4x4y2z2 + 2475w4x2y4z2−
330w4xz7 − 165w4y6z2 + 1320w3x5yz3 − 4400w3x3y3

z3 + 1320w3xy5z3 − 165w3yz8 − 165w2x6z4 + 2475w2

x4y2z4 − 2475w2x2y4z4 + 55w2xz9 + 165w2y6z4−
11wx10y + 165wx8y3 − 462wx6y5 − 396wx5yz5 + 330wx4

y7 + 1320wx3y3z5 − 55wx2y9 − 396wxy5z5 + wy11 + 11wy

z10 + x11z − 55x9y2z + 330x7y4z + 11x6z6 − 462x5y6z − 165x4y2z6

+ 165x3y8z + 165x2y4z6 − 11xy10z − xz11 − 11y6z6
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Application of Algorithms and Results

We now want to take random real linear combinations

f = a1f1 + . . .+ a13f13

and either
i) determine the number of critical points of their restrictions to
S3 (dividing the resulting number by 120 gives the number of
critical points of the descent of the corresponding function to
SPHS);

or, equivalently
ii) determine the number of critical points of the function

f ◦ π−1s : R3 → R belonging to πs(V (p)).
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Application of Algorithms and Results

Frank Sottile followed approach i). He took the function f1 and using
Software Bertini, found that f1|S3 has 1440 critical points. So this function
has 1440/120 = 12 critical points in SPHS. We expected 6.
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Application of Algorithms and Results

I followed approach ii). I run the algorithm for Detecting Critical Regions
(Weber, Scheuermann, Hagen, and Hamann 2003) presented in my last
talk, followed by the nsolve function of the Python SymPy library.
With the following results:

f1, f2, f12 and f13 have 12 critical points
f3, f4, . . . , f11 have 6 critical points
f1 + f3 has 6 critical points
f4 + f7 has 6 critical points
f2 + f3 + f4 has 6 critical points
5f2 + 2f3 − 7f5 has 6 critical points
−3f6 − 2f8 + 4f11 has 6 critical points
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Thanks!
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