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Forward problem

Quantitative model Predictions of data
dA A wf T MR A T
Model parameters @it ) M = O+ )
5= 65 '“’ = frmA — b8 u. M,
€ = 10000 "d"’ = 08 M — (O + M,
=09 M g M, — My
fla =013 i, "
j —05 @ = unH 1,7/‘ M ll, unH,
b=4 ";" =bBh “’l Hy — (0 + ) H,
";l" = OuH, — (yn + ) H — Estimated Cases 2009 - 2010

Get a solution of the system of equations given by

dy
5 = H(Ly;9), y(to) = xo,
where x = (x1,...,x,) is the vector of 1 variables,

6 = (61,...,0,) € RV is the vector of p parameters,

xo = (x1,,...,%y,) is the vector of initial conditions, and ¢
represents time.



Inverse problem
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The optimization problem that we want to solve is given by

min  d(y;(t;0), x;(t))

9 QCRY
s.t ay _ f(t;y;0), t € [t T]
dt
y(to) = o

where 6 is the parameter vector, xy is the vector of initial

conditions, and x; is the data observed.



Experimental assays

[Temperature]  Stage Bello
Egg hatching]  23°C 62.6+4.7
(%)

27°C 51.7+1.5

Immature 23°C Larva 85.2+84
survival (%)

Pupa 98.1+1.7

27°C Larva 88.2+54

Pupa 94.2+5.1

[Sex ratio (% 23°C Male 48.9+4.2

Female 51142

27°C Male 55.2+2.7

Female 44.8+2.7

Temperature]  Stage Bello

Development 23°C Larva 142 | 23206
time (days)

Larva 3 1+0.0

Larva 4 1+0.0

Total larva| 43+06

Pupa 3306

Larva + 7.7+£06

Pupa

27°C Larva 142 2+0.0

Larva 3 1£0.0

Larva 4 120.0

Total larva| 4200

Pupa 1.720.6

Larva+ | 57+06

Pupa
Emerging 23°C Male 10=1.0
time (days)

Female | 103+06

27°C Male 73206

Female 820.0




Number of reported cases

The actual numbers of dengue cases are under-reported and
many cases are misclassified. One recent estimate indicates 390
million dengue infections per year (95% confidence interval,
284 - 528 million), of which 96 million (67 - 136 million)
manifest clinically (with any severity of disease)(Bhatt et al.
2013).
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Uncertainty

Uncertainty is present in any process of measuring and
obtaining information that is required to explain a real
phenomenon. In many sciences it is possible to conduct
experiments to obtain information and test hypotheses.
Experiments on the spread of infectious diseases in human
populations are often impossible, unethical or expensive
(Hethcote, 2009).



Probability approximation

m This method is based on probability distributions of the
parameters with uncertainty.

m Sufficient information on the uncertainty is not always
available or sometimes expensive for many practical
problems.

m There are works indicating that even a small deviation of
the probability distribution is likely to cause a large error
of the reliability analysis (Ben-Haim and Elishakoff, 2013).



Interval-valued approximation

m In the last two decades, the interval method in which
interval is employed to model the uncertainty has been
attracting more and more attention (Moore, Bierbaum, and
Schwiertz, 1979; Braems et al. 2005; Hijazi et al. 2008).

m We only have to establish the bounds of the uncertainty of
a parameter.

m Interval method has been successfully applied to

uncertainty optimization problems (Jiang, Liu, and Han,
2008; Gallego-Posada and Puerta-Yepes, 2017).



How has uncertainty been considered in
epidemiological models?

(i) Probability theory

m In (Luz et al. 2003) it is assumed that parameters as dura-
tion of infectious period in humans, biting rate, mosquito
to human transmission and human to mosquito transmis-
sion follow a uniform distribution, while the extrinsic in-
cubation period follows a triangular distribution. This in-
formation was obtained from several works that conducted
experiments with different vector populations.

m In (Britton and Lindenstrand, 2009) it is assumed that latent
and infection periods are random and independent with the
gamma distribution.



How has uncertainty been considered in
epidemiological models?

(i) Probability theory

m In (Luz et al. 2003) it is assumed that parameters as dura-
tion of infectious period in humans, biting rate, mosquito
to human transmission and human to mosquito transmis-
sion follow a uniform distribution, while the extrinsic in-
cubation period follows a triangular distribution. This in-
formation was obtained from several works that conducted
experiments with different vector populations.

m In (Britton and Lindenstrand, 2009) it is assumed that latent
and infection periods are random and independent with the
gamma distribution.

(ii) Fuzzy theory: In (Barros et al. 2001) an SIS model was

formulated, where the transmission and recovery rate are

given by functions that depend on the amount of virus.



Epidemiological data

The parameters used in the model, their biological descriptions,
and their ranges of values.

Param. Meaning V. / day V. / week

b Biting rate [0,1] [0,4]

) Per capita oviposition rate [8,24] [55,165]
Yim Transition rate from the aquatic phase to the adult phase  [0.125,0.2] [0.875,1.4]
Ha Mortality rate in the aquatic phase [0.001,0.5] [0.007,0.3]
M Mortality rate in the adult phase [0.008,0.03]  [0.06,0.20]
f Fraction of female mosquitoes hatched from all eggs [0.42,0.55] [0.42,0.55]
C Carrying capacity of the environment [6400,95000]  [6400,95000]
i Birth and death rate of the human population 0.00006 0.0004
B Transmission probability from mosquito to human [0,1] [0,1]

B Transmission probability from human to mosquito [0,1] [0,1]

O Transition rate from exposed to infectious mosquitoes [0.08,0.13] [0.58,0.88]
0y Transition rate from exposed to infectious humans [0.1,0.25] [0.7,1.75]
T Recovery rate [0.07,0.25] [0.5,1.75]




Initial conditions
The initial conditions used in the model, their descriptions, and
their ranges of values.

Initial condition Meaning Range
A(0) Initial condition for the aquatic phase [5755,17265]
M;(0) Initial condition for susceptible mosquitoes [0, 1200000]
M, (0) Initial condition for exposed mosquitoes [0,100]
M;(0) Initial condition for infectious mosquitoes [0, 100]
H;(0) Initial condition for susceptible humans [244402,321734]
H,.(0) Initial condition for exposed humans (18,72]
H;(0) Initial condition for infectious humans [6,24]
H,(0) Initial condition for recovered humans [81405, 158809]




Problem statement

Epidemiological model
with uncertainty

Parameters and
initial conditions

Forward problem

dx
e f(t;x; P), t € [to, T]
x(tg) = Xo

Reported cases
with uncertainty

Inverse problem
Plrélgk dg(z;(t; P), Di(t))

dx

s.t T f(t;x;P), t € [to,T)
x(tg) = Xo
Model fit to

interval data




Forward problem

Consider the initial value problem

y'(t) =f(y,0)

1)
y(to) =1Yo € Yy, 0 €0

where t € [to, t,], 0 is a p—dimensional vector of parameters, y
is the n—dimensional vector of state variables, 1 is the

n—dimensional vector of initial values.



Forward problem

m The basis for solving problems of this type is the
approximation by Taylor models, Ty = p; + 1y (Makino and
Berz, 2003).

m The algorithms applied to solve (1) are divided into two
stages. The first stage validates the existence and
uniqueness of the solution, and the second stage computes
a tighter enclosure where the solution is found (Lin and
M. A. Stadtherr, 2007).

m In (Nedialkov, Jackson, and Corliss, 1999), the authors
presented a review of the methods used to solve (1) and
difficulties that may arise.



Forward problem

m In (Lin and M. A. Stadtherr, 2007), they considered
autonomous systems with initial conditions and
parameters given by intervals as the system (1).

m In (Enszer and M. Stadtherr, 2009) they used the VSPODE,
for propagating uncertainties through nonlinear ODE
models in population epidemiology.

m Softwares: VNODE, COSY INFINITY, VSPODE, among
others.



Example taken from (Enszer and M. Stadtherr, 2009)

Consider the SIRS model. We assume a constant total
population n = s + i+ 7.

d

d—j = —Bsi+y(n—s—i)

di

%:ﬁsz—vz



Example taken from (Enszer and M. Stadtherr, 2009)

For this example, we obtain

500000 [

500000 [

400000
400000

300000
300000

200000
200000

100000
100000

o

0o 05 10 15 2.0 ok =
0.0 05 10 15 20

(a) Susceptible population (b) Infected population

Figure: Initial conditions: # = 500000 (indv), s(0) = 498000 (indv),
i(0) = 2000 (indv). Parameters: v = 50 (yr '), B € [2, 2.5] x 107
yrlindv !, v € [0.125, 0.250] (yr ).



Example: Dengue model, Bello’s case

dA A
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dgs = upH — bpy, %H — HnHs
dge = bﬁh%Hs — (6 + pn)He
T~ 4 He — (o + o)

dH,




Example: Dengue model, Bello’s case

Consider B,, = bB,, € [2.2, 2.5| and B;, = bp), € [0.55, 0.65].

100

0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) Uncertainty in By, (b) Uncertainty in B, and By,

Figure: Parameter values: 6 = 65, v, = 0.9, u, = 0.13, y, = 0.12,
b=4,0,=06,f=05,0,=0.7C=10000, v, =1, B = 0.15, and
1, = 0.0004. Initial conditions: A(0) = 9000, M;(0) = 1199950,
M,(0) = 40, M;(0) = 10, H;(0) = 321710, H.(0) = 18, H;(0) = 6, and
H,(0) = 81501.



Example: Dengue model, Bello’s case

0 10 20 30 40 50 60 [ 10 20 30 40 50 60

(a) Uncertainty in H;(0) (b) Uncertainty in all initial con-
ditions for human population

Figure: Parameter values: 6 = 65, v, = 0.9, y, = 0.13, p, = 0.12,
b=4,0,=06,f=05,60,=0.7C=10000, v, =1, B, = 0.15, and
1, = 0.0004. Initial conditions: A(0) = 9000, M;(0) = 1199950,
M,(0) = 40, and M;(0) = 10. In (a) Hs(0) = 321710, H.(0) = 18,
H;(0) € [6,12]. In (b) Hs(0) € [321710,369967|, H.(0) € [18,20.7],
H;(0) € [6,6.9].



Inverse problem
If we have interval data as input. What is that meaning that the

output of the model "fit” or be compatible with the interval
data?
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Notation

m Letbe Z = (Y, ©) a p—dimensional vector where its first
m coordinates correspond to the interval initial conditions
of the model in (1) and its last p — m coordinates
correspond to interval parameters of the aforementioned
model.

m Consider the vector X; = (X;, X,,, ..., X; ) as the interval
experimental data regarding the model in (1) where i is the
number of variables in the model ranging from 1 to 7, and
the number of measurements at different times is denoted
by k.

m The vector YV; = (Y;, Y
system solution in (1) for the variable 7 at the time f.

i, ---, Yj ) is the enclosure of the



Definition

The vector Z is compatible with an interval experimental data
Xi,, Xiy, ..., X, if for each measurement k, there are
representatives x; € X;,...,x; € X; such that

X, € Y,'],. c X € Y,'k.

This set of vectors is called united solution set of the model (1).
Eunit(X,Y) = {Z € Z7 | there exist x € X such that x € Y }

where X and Y are interval matrices, and x is a real matrix. All

these matrices have the same dimension, k x 7.



Definition

The vector Z is strongly compatible with the interval
experimental data X; , X;,, ..., X;_if for each measurement k,
and for any representatives x;, € X;,...,x; € X there holds
thatx; € Y;,...,x; €Y.

The set composed of Z vectors that satisfy the previous defini-
tion is called tolerable solution set of the model (1).

E(X,Y) ={Z € I |forany x € X, x€ Y} (2)

Observation

Etol(xr Y) g Eunit(xz Y)



How to know if a vector Z belongs to the tolerable
solution set?
We have to check that X;, C Y;, X;, CY;,...,X; CY; foreach
variable 1.
Let X = [X;, Xi,]] and Y; = [V, Yil]] We said X;, is subset of
Y if

min min { (X; —Y;), (V; =X;)} >0 3)

1<i<n 1<j<k

or equivalently if

min min { rad Y —rad X, — |mid Xi; — mid Yi].] }>0 (4

1<i<n 1<j<k

where, X = [X, X] = mid X + [ —rad X, rad X |



Example

Consider the sir model normalized, ie., 0 <s<1,0<i<1
and 0 < r <1, where j, , and 7 are mortality rate,
transmission probability and recovery rate, respectively. Also
the population is constant, s +i 4 r = 1.

ds

F =M Psi—ps
di _ .
5 = Psi— (p+ )i
dr .
%:'yz—w

this system can be reduced to the two first equations

ds =y — Bsi— us
di ) .
5 = Psi—(p+ )i
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(d) Prop. of susceptible (e) Prop. of infected

Figure: Initial conditions: s(0) = 0.97,i(0) = 0.03. Parameters:
u=0.1,7=05p € [0.68,0.72].

For (4),

min { —0.0974893, —0.0243558} = —0.0974893 < 0

1<i<2



Proportion of Susceptible
Proportion of Infected

0 10 30 40 0 10 30

20 20
Time (days) Time (days)

(a) Prop. of susceptible (b) Prop. of infected

Figure: Initial conditions: s(0) = 0.97,i(0) = 0.03. Parameters:
u=01,v =058 € [0.71, 0.74].

For (4),

min { —0.0733967, —0.0186444} = —0.0733967 < 0

1<i<2

40
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20
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(a) Prop. of susceptible

20
Time (days)

(b) Prop. of infected

Figure: Initial conditions: s(0) = 0.97,i(0) = 0.03. Parameters:

u=01,v=05,p € [0.68,0.81].

112212 {0.000414505, 0.000336667} = 0.000336667 > 0
<i<




If we want to explore all the parameter space? How can
we do that?
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First stage




First stage




Algorithm: GSearch of strongly compatible vectors with IData

Input:

1 M, the model given by (1).

2 X € 757k the interval experimental data matrix where s
corresponds to the number of variables and k corresponds
to the number of measurements for each variable.

3 Z = (Yy,0) e IF, where its first m coordinates correspond
to the interval initial conditions and its last p — m
coordinates correspond to interval parameters of the
model.

4 m, the number of intervals for each component of the
interval vector Z.

Output:

m W is the set of vectors Z which are strongly compatible
with the interval data X.



Algorithm 1 GSearch of strongly compatible vectors with IData

procedure TOLERABLE SOLUTION SET
W<+ O
fork =1tomdo
fori=1topdo

Zi* i Zﬁ i
Zlk<_ |:Zl+k( 7)]>’Z1+(k+1) ( 7I’I>:|

end for
Zk — [Zlk’ sz, ey ZPk]
Y, < VSPODE(Z;, M)
if TOI(Zk, X, Yk) Z 0 then
W+ WuU{Z}
end if
end for

end procedure




Conclusions

m This work provides an original method to determine the
type of compatibility between the interval-data and the
vector of initial conditions and parameters of ODEs which

can only be solved numerically.



Conclusions

m This work provides an original method to determine the
type of compatibility between the interval-data and the
vector of initial conditions and parameters of ODEs which

can only be solved numerically.

m We propose an algorithm to estimate interval parameters
in order to fit the model given by (1) to interval-data. The
proposed framework, based on a measure of
compatibility (4) is generic, reliable and simple to use.



Conclusions

m We already implemented the first stage of the proposed
algorithm in Mathematica software. For this, we
constructed a link between the VSPODE and Mathematica.



Conclusions

m We already implemented the first stage of the proposed
algorithm in Mathematica software. For this, we
constructed a link between the VSPODE and Mathematica.

m We expect with this algorithm to be capable of estimating
solutions more robust for models which simulated the
transmission of dengue disease in different regions of
Colombia.



Thank you!

Questions?
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